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A short introduction to random forest

Introduced by [Breiman, 2001], they are ensemble methods
[Dietterich, 2000], similarly as Bagging, Boosting, Randomizing
Outputs, Random Subspace

Statistical learning algorithm that can be used for classification and
regression. It has been used in many situations involving real data
with success:

I microarray [Díaz-Uriarte and Alvarez de Andres, 2006]
I ecology [Prasad et al., 2006]
I pollution forecasting [Ghattas, 1999]
I la génomique [Goldstein et al., 2010, Boulesteix et al., 2012]
I for more references, [Verikas et al., 2011]
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Description of RF
Ln = {(X1,Y1), . . . , (Xn,Yn)} i.i.d. observations of a random pair of
variables (X ,Y) st

X ∈ Rp (explanatory variables)

Y ∈ Y (target variable). Y can be R (regression) or {1, . . . , M}
(classification).

Purpose: define a predictor f̂ : Rp → Y from Ln.

Random forest from [Breiman, 2001]{̂
f(.,Θb), 1 ≤ b ≤ B

}
is a set of regression or classification trees.

(Θb)1≤b≤B are i.i.d. random variables, independent of Ln.

The random forest is obtained by aggregation of the set.

Aggregation:

regression: f̂(x) = 1
B

∑B
b=1 f̂(x,Θb)

classification: f̂(x) = arg max1≤c≤M
∑B

b=1 1
{̂f(x,Θb )=c}
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CART

Tree: piecewise constant
predictor obtained with recursive
binary partitioning of Rp

Constrains: splits are parallel to
the axes

At every step of the binary
partitioning, data in the current
node are split “at best” (i.e., to
have the greatest decrease in
heterogeneity in the two child
nodes

Figure: Regression tree
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CART partitioning
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Classification and regression frameworks

Figure: Regression tree Figure: Classification tree
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Random forest with Bagging [Breiman, 1996]

(Xi ,Yi)i=1,...,n

(Xi ,Yi)i∈τ1 (Xi ,Yi)i∈τb (Xi ,Yi)i∈τB

f̂1 f̂b f̂B

aggregation: f̂bag = 1
B

∑B
b=1 f̂b

CART

subsample with replacement B times
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Trees in random forests

Variant of CART,
[Breiman et al., 1984]: piecewise
constant predictor, obtained by a
recursive partitioning of Rp with
splits parallel to axes

But: At each step of the
partitioning, we seek the “best”
split of data among mtry
randomly picked directions
(variables).

No pruning (fully developed trees)
Figure: Regression tree
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OOB error and estimation of the prediction error

OOB = Out Of Bag

OOB error

For predicting Yi , only predictors f̂b such that i < τb are used⇒ Ŷi

OOB error = 1
n
∑n

i=1

(
Yi − Ŷi

)2
(regression)

OOB error = 1
n
∑n

i=1 1
{Yi,Ŷi }

(classification)

estimation similar to standard cross validation estimation

... without splitting the training dataset because it is included in the
bootstrap sample generation

Warning: a different forest is used for the prediction of each Yi !
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Variable importance
Definition
For j ∈ {1, . . . , p}, for every bootstrap sample b, permute values of the j
variable in the bootstrap sample.
Predict observation i (OOB prediction) for tree b:

in a standard way f̂b(Xi)

after permutation f̂b(X (j)
i )

Importance of variable j for tree f̂b is the average increase in accuracy
after permutation of variable j. Regression case:

I(X j) =
1
B

B∑
b=1

1
n

n∑
i=1

[
(̂fb(X (j)

i ) − Yi)
2 − (̂fb(Xi) − Yi)

2
]

The greater the increase,
the more important the variable is.
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Why RF and Big Data?

on one hand, bagging is appealing because easily computed in
parallel.

on the dark side, each bootstrap sample has the same size than the
original dataset (i.e., n, which is supposed to be LARGE) and contains
approximately 0.63n different observations (which is also LARGe)!
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Types of strategy to handle big data problems
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Types of strategy to handle big data problems

Here: Bag of Little Bootstrap
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Types of strategy to handle big data problems

Here: A MapReduce approach
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Types of strategy to handle big data problems
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Overview of BLB
[Kleiner et al., 2012, Kleiner et al., 2014]

method used to scale any bootstrap estimation

consistency result demonstrated for a bootstrap estimation

Here: we describe the approach in the simplified case of bagging (as for
random forest)

Framework: (Xi ,Yi)i=1,...,n a learning set. We want to define a predictor of
Y ∈ R from X given the learning set.
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Problem with standard bagging

When n is big, the number of different observations in τb is ∼ 0.63n⇒ still
BIG!

First solution...: [Bickel et al., 1997] propose the “m-out-of-n” bootstrap:
bootstrap samples have size m with m � n
But: The quality of the estimator strongly depends on m!

Idea behind BLB
Use bootstrap samples having size n but with a very small number of
different observations in each of them.
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Presentation of BLB

(X1,Y1) . . . (Xn,Yn)

(X(1)
1 ,Y(1)

1 ) . . . (X(1)
m ,Y(1)

m )

(X
(B1)

1 ,Y
(B1)

1 ) . . . (X
(B1)
m ,Y

(B1)
m )

...

n(1,1)
1 . . . n(1,1)

m

n
(1,B2)

1 . . . n
(1,B2)
m

n
(B1 ,1)

1 . . . n
(B1 ,1)
m

n
(B1 ,B2)

1 . . . n
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m
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...

f̂ (1,1)

f̂ (1,B2)

f̂ (B1,1)

f̂ (B1,B2)

f̂1
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f̂BLB

sampling, no
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(size m � n)

over-sampling

mean

mean
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What is over-sampling and why is it working?
BLB steps:

1 create B1 samples (without replacement) of size m ∼ nγ (with
γ ∈ [0.5, 1]: for n = 106 and γ = 0.6, typical m is about 4000,
compared to 630 000 for standard bootstrap

2 for every subsample τb , repeat B2 times:
I over-sampling: affect weights (n1, . . . , nm) simulated asM

(
n, 1

m1m

)
to

observations in τb

I estimation step: train an estimator with weighted observations

3 aggregate by averaging

Remark: Final sample size (
∑m

i=1 ni) is equal to n (with replacement) as in
standard bootstrap samples.
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Overview of Map Reduce

Map Reduce is a generic method to deal with massive datasets stored on
a distributed filesystem.

It has been developped by Google
TM

[Dean and Ghemawat, 2004] (see also
[Chamandy et al., 2012] for example of use at Google).
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Overview of Map Reduce

Data

Data 1

Data 2

Data 3

The data are broken into several bits.
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Overview of Map Reduce

Data

Data 1

Data 2

Data 3

Map

Map

Map

{(key, value)}

{(key, value)}

{(key, value)}

Each bit is processed through ONE map step and gives pairs {(key, value)}.
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Overview of Map Reduce

Data

Data 1

Data 2

Data 3

Map

Map

Map

{(key, value)}

{(key, value)}

{(key, value)}

Map jobs must be independent! Result: indexed data.
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Overview of Map Reduce

Data

Data 1

Data 2

Data 3

Map

Map

Map

{(key, value)}

{(key, value)}

{(key, value)}

Reduce
key = keyk

Reduce
key = key1

OUTPUT

Each key is processed through ONE reduce step to produce the output.
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MR implementation of random forest

A Map/Reduce implementation of random forest is included in Mahout
(Apache scalable machine learning library) which works as
[del Rio et al., 2014]:

data are split between Q bits sent to each Map job;

a Map job train a random forest with a small number of trees in it;

there is no Reduce step (the final forest is the combination of all trees
learned in the Map jobs).

Note that this implementation is not equivalent to the original random
forest algorithm because the forests are not built on bootstrap samples of
the original data set.

Nathalie Villa-Vialaneix | RF for Big Data 21/39



MR implementation of random forest

A Map/Reduce implementation of random forest is included in Mahout
(Apache scalable machine learning library) which works as
[del Rio et al., 2014]:

data are split between Q bits sent to each Map job;

a Map job train a random forest with a small number of trees in it;

there is no Reduce step (the final forest is the combination of all trees
learned in the Map jobs).

Note that this implementation is not equivalent to the original random
forest algorithm because the forests are not built on bootstrap samples of
the original data set.

Nathalie Villa-Vialaneix | RF for Big Data 21/39



Drawbacks of MR implementation of random forest

Locality of data can yield to biased random forests in the different Map
jobs⇒ the combined forest might have poor prediction performances

OOB error cannot be computed precisely because Map job are
independent. A proxy of this quantity is given by the average of OOB
errors obtained from the different Map tasks⇒ again this quantity
must be biased due to data locality (similar problem with VI).
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Another MR implementation of random forest
... using Poisson bootstrap [Chamandy et al., 2012] which is based on the fact
that (for large n):

Binom
(
n,

1
n

)
' Poisson(1)

1 Map step ∀ r = 1, . . . , Q (chunk of data τr ). ∀ i ∈ τr , generate B
random i.i.d. random variables from Poisson(1) nb

i (b = 1, . . . , B).

Output: (key, value) are (b , (i, nb
i )) for all pairs (i, b) st nb

i , 0
(indices i st nb

i , 0 are in bootstrap sample number b nb
i times);

2 Reduce step proceeds bootstrap sample number b: a tree is built
from indices i st nb

i , 0 repeated nb
i times.

Output: A tree... All trees are collected in a forest.

Closer to using RF directly on the entire dataset But: every Reduce job
should deal with approximately 0.63 × n different observations... (only the
bootstrap part is simplified)
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Output: (key, value) are (b , (i, nb

i )) for all pairs (i, b) st nb
i , 0

(indices i st nb
i , 0 are in bootstrap sample number b nb

i times);

2 Reduce step proceeds bootstrap sample number b: a tree is built
from indices i st nb

i , 0 repeated nb
i times.

Output: A tree... All trees are collected in a forest.

Closer to using RF directly on the entire dataset But: every Reduce job
should deal with approximately 0.63 × n different observations... (only the
bootstrap part is simplified)
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Online learning framework

Data stream: Observations (Xi ,Yi)i=1,...,n have been used to obtain a
predictor f̂n
New data arrive (Xi ,Yi)i=n+1,...,n+m: How to obtain a predictor from the
entire dataset (Xi ,Yi)i=1,...,n+m?

Naive approach: re-train a model from (Xi ,Yi)i=1,...,n+m

More interesting approach: update f̂n with the new information
(Xi ,Yi)i=n+1,...,n+m

Why is it interesting?

computational gain if the update has a small computational cost (it
can even be interesting to deal directly with big data which do not
arrive in stream)

storage gain
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Framework of online bagging

f̂n =
1
B

B∑
b=1

f̂b
n

in which

f̂b
n has been built from a bootstrap sample in {1, . . . , n}

we know how to update f̂b
n with new data online

Question: Can we update the bootstrap samples online when new data
(Xi ,Yi)i=n+1,...,n+m arrive?
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Online bootstrap using Poisson bootstrap

1 generate weights for every bootstrap samples and every new
observation: nb

i ∼ Poisson(1) for i = n + 1, . . . , n + m and
b = 1, . . . , B

2 update f̂b
n with the observations Xi such that nb

i , 0, each repeated
nb

i times

3 update the predictor:

f̂n+m =
1
B

B∑
b=1

f̂b
n+m.
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PRF

In Purely Random Forest [Biau et al., 2008], the splits are generated
independently from the data

splits are obtained by randomly choosing a variable and a splitting
point within the range of this variable

decision is made in a standard way
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Online PRF

PRF is described by:

∀ b = 1, . . . , B, f̂b
n : PR tree for bootstrap sample number b

∀ b = 1, . . . , B, for all terminal leaf l in f̂b
n , obsb ,l

n is the number of
observations in (Xi)i=1, ..., n which falls in leaf l and valb ,ln is the average
Y for these observations (regression framework)

Online update with Poisson bootstrap:

∀ b = 1, . . . , B, ∀ i ∈ {n + 1, . . . , n + m} st nb
i , 0 and for the terminal

leaf l of Xi :

valb ,li =
valb ,li−1 × obsb ,l

i−1 + nb
i × Yi

obsb ,l
i−1 + nb

i

(online update of the mean...)

obsb ,l
i = obsb ,l

i−1 + nb
i
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Online RF

Developed to handle data streams (data arrive sequentially) in an
online manner (we can not keep all data from the past):
[Saffari et al., 2009]

Can deal with massive data streams (addressing both Volume and
Velocity characteristics), but also to handle massive (static) data, by
running through the data sequentially

In depth adaptation of Breiman’s RF: even the tree growing
mechanism is changed

Main idea: think only in terms of proportions of output classes,
instead of observations (classification framework)

Consistency results in [Denil et al., 2013]
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1 Random Forest

2 Strategies to use random forest with big data
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When should we consider data as “big”?

We deal with Big Data when:

data are at google scale (rare)

data are big compared to our computing capacities

... and depending
on what we need to do with them

[R Core Team, 2016, Kane et al., 2013]

R is not well-suited for working with data structures larger than
about 10–20% of a computer’s RAM. Data exceeding 50% of
available RAM are essentially unusable because the overhead of
all but the simplest of calculations quickly consumes all available
RAM. Based on these guidelines, we consider a data set large if
it exceeds 20% of the RAM on a given machine and massive if it
exceeds 50%.
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Implementation

standard randomForest R package (done)

bigmemory bigrf R package
MapReduce

I at hand (done)
I R packages rmr, rhadoop
I Mahout implementation

Online RF: Python code from [Denil et al., 2013], and C++ code from
[Saffari et al., 2009].
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MR-RF in practice: case study [Genuer et al., 2015]

15,000,000 observations generated from: Y with
P(Y = 1) = P(Y = −1) = 0.5 and the conditional distribution of the
(X (j))j=1,...,7 given Y = y

with probability equal to 0.7, X (j) ∼ N(jy, 1) for j ∈ {1, 2, 3} and
X (j) ∼ N(0, 1) for j ∈ {4, 5, 6};

with probability equal to 0.3, X j ∼ N(0, 1) for j ∈ {1, 2, 3} and
X (j) ∼ N((j − 3)y, 1) for j ∈ {4, 5, 6};

X7 ∼ N(0, 1).

Comparison of subsampling, BLB, MR with well distributed data within
Map jobs.
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Airline data

Benchmark data in Big Data articles (e.g., [Wang et al., 2015])
containing more than 124 millions of observations and 29 variables

Aim: predict delay_status (1=delayed, 0=on time) of a flight using 4
explanatory variables (distance, night, week-end,
departure_time).

Not really massive data: 12 Go csv file
Still useful to illustrate some Big Data issues:

I too large to fit in RAM (of most of nowadays laptops)
I R struggles to perform complex computations unless data take less

than 10% − 20% of RAM (total memory size of manipulated objects
cannot exceed RAM limit)

I long computation times to deal with this dataset

Preliminary experiments on a Linux 64 bits server with 8 processors,
32 cores and 256 Go of RAM
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Comparison of different BDRF on a simulation study
sequential forest: took approximately 7 hours and the resulting OOB error
was equal to 4.564e−3.

Method Comp. time BDerrForest errForest errTest
sampling 10% 3 min 4.622e(-3) 4.381e(-3) 4.300e(-3)
sampling 1% 9 sec 4.586e(-3) 4.363e(-3) 4.400e(-3)
sampling 0.1% 1 sec 5.600e(-3) 4.714e(-3) 4.573e(-3)
sampling 0.01% 0.3 sec 4.666e(-3) 5.957e(-3) 5.753e(-3)
BLB-RF 5/20 1 min 4.138e(-3) 4.294e(-3) 4.267e(-3)
BLB-RF 10/10 3 min 4.138e(-3) 4.278e(-3) 4.267e(-3)
MR-RF 100/1 2 min 1.397e(-2) 4.235 e(-3) 4.006e(-3)
MR-RF 100/10 2 min 8.646e(-3) 4.155e(-3) 4.293e(-3)
MR-RF 10/10 6 min 8.501e(-3) 4.290e(-3) 4.253e(-3)
MR-RF 10/100 21 min 4.556e(-3) 4.249e(-3) 4.260e(-3)

all methods provide satisfactory results comparable with sequential
RF
average OOB error over the Map forests can be a bad approximation
of true OOB error (sometimes optimistic, sometimes pessimistic)
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What happens if Map Jobs are unbalanced between the
two submodels? between the two classes of Y?

Method Comp. time BDerrForest errForest errTest
unbalanced1 100/1 3 minutes 3.900e(-3) 5.470e(-3) 5.247e(-3)
unbalanced1 10/10 8 minutes 2.575e(-3) 4.714e(-3) 4.473e(-3)
unbalanced2 100/1/0.1 2 minutes 5.880e(-3) 4.502e(-3) 4.373e(-3)
unbalanced2 10/10/0.1 3 minutes 4.165e(-3) 4.465e(-3) 4.260e(-3)
unbalanced2 100/1/0.01 1 minute 1.926e(-3) 8.734e(-2) 4.484e(-2)
unbalanced2 10/10/0.01 4 minutes 9.087e(-4) 7.612e(-2) 7.299e(-2)
x-biases 100/1 3 minutes 3.504e(-3) 1.010e(-1) 1.006e(-1)
x-biases 100/10 3 minutes 2.082e(-3) 1.010e(-1) 1.008e(-1)

unbalancing of Y in the different map jobs does not affect much the
performances

however, if the relation between (X ,Y) is different in different subsets
of data, unbalancing these submodels can lead to strongly deteriorate
the performance
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Airline dataset

Method Computational time BDerrForest errForest
sampling 10% 32 min 18.32% 18.32%
sampling 1% 2 min 18.35% 18.33%
sampling 0.1% 7 sec 18.36% 18.39%
sampling 0.01% 2 sec 18.44% 18.49%
BLB-RF 15/7 25 min 18.35% 18.33%
MR-RF 15/7 15 min 18.33% 18.27%
MR-RF 15/20 25 min 18.34% 18.20%
MR-RF 100/10 17 min 18.33% 18.20%

sequential forest: The RF took 16 hours to be obtained and its OOB error
was equal to 18.32% (only 19.3% of the flights are really late).
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Perspectives

Sampling for MapReduce-RF:
I Use a partition into map jobs stratified on Y , or at least a random

partition
I Use the Bag of Little Bootstrap from [Kleiner et al., 2012]

Possible variants for MapReduce RF:
I Use simplified RF, e.g., Extremly Randomized Trees,

[Geurts et al., 2006] (as in Online RF)
I See the whole forest as a forest of forests and adapt the majority vote

scheme using weights
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Have you survived to Big Data?

Questions?
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